Свет как электромагнитная волна
Moto-sol.ru

Автомобильный портал

Свет как электромагнитная волна

Свет как электромагнитная волна

Что такое свет?

Свет — это форма энергии, видимая человеческим глазом, которую излучают движущиеся заряженные частицы.

Солнечный свет играет важную роль в жизни живой природы. Он необходим для роста растений. Растения преобразуют энергию солнечного света в химическую форму с помощью процесса фотосинтеза. Нефть, уголь и природный газ являются остатками растений, живших миллионы лет назад. Можно сказать, что это энергия преобразованного солнечного света.

Ученые с помощью экспериментов доказали, что время от времени свет ведет себя как частица, а в другое время как волна. В 1900 году квантовая теория Макса Планка объединила две точки зрения ученых на свет. И в современной физике свет рассматривают как поперечные электромагнитные волны, видимые человек, которые излучаются квантами света (фотонами) — частицами не имеющими массы и движущимися со скоростью

Характеристики света

Как любую волну, свет можно охарактеризовать длиной (λ), частотой (υ) и скоростью распространения в какой-либо среде (v). Связь между этими величинами демонстрирует формула:

Видимый свет лежит в диапазоне длин волн электромагнитного излучения от м (в порядке возрастания длины волны: фиолетовый, синий, зеленый, желтый, оранжевый, красный). Частота световой волны связана с его цветом.

Когда световая волна переходит из вакуума в среду, то происходит уменьшение ее длины и скорости распространения, частота световой волны остается неизменной:

n — показатель преломления среды, с — скорость света в вакууме.

Необходимо помнить, что скорость света:

  • в вакууме является универсальной постоянной во всех системах отчета;
  • в среде всегда меньше скорости света в вакууме;
  • зависит от среды, через которую он проходит;
  • в вакууме всегда больше скорости любой частицы, обладающей массой.

Волновая природа света

Волновая природа света была впервые проиллюстрирована с помощью экспериментов по дифракции и интерференции. Как и все электромагнитные волны, свет может проходить через вакуум, отражаться и преломляться. Поперечную природу света доказывает явление поляризации.

Интерференция

Световые волны, имеющие постоянную разность фаз и одинаковые частоты, производят видимый эффект интерференции, когда происходит усиление или ослабление результирующей волны.

Исаак Ньютон был одним из первых ученых, изучавших явление интерференции. В своем знаменитом эксперименте «Кольца Ньютона» он соединил выпуклую линзу с большим радиусом кривизны с плоской стеклянной пластиной. Если рассматривать эту оптическую систему через отраженный солнечный свет, наблюдается ряд концентрических светлых и темных сильно окрашенных кругов света. Кольца проявляются из-за тонкого слоя воздуха между линзой и пластиной. Свет, отраженный от верхней и нижней поверхности стекла, интерферирует и дает максимум интерференции в виде светлых, а минимум в виде темных колец.

Дифракция

Дифракция — это огибание световой волной препятствий. Явление можно наблюдать, когда препятствие по своим размерам сравнимо с длиной волны. Если объект намного больше длины волны от источника света, явление практически незаметно.

Результат дифракции — чередующиеся цветные и темные полосы света или концентрические окружности. Этот оптический эффект возникает в результате того, что волны, обогнувшие препятствие интерферируют. Такую картину дает отраженный от поверхности компакт-диска свет.

Учебники

Журнал “Квант”

Общие

Содержание

Свет как электромагнитная волна

Природа света

Первые представления о природе света возникли у древних греков и египтян. По мере изобретения и совершенствования различных оптических приборов (параболических зеркал, микроскопа, зрительной трубы) эти представления развивались и трансформировались. В конце XVII века возникли две теории света: корпускулярная (И. Ньютон) и волновая (Р. Гук и Х. Гюйгенс).

Волновая теория рассматривала свет как волновой процесс, подобный механическим волнам. В основу волновой теории был положен принцип Гюйгенса. Большая заслуга в развитии волновой теорий принадлежит английскому физику Т. Юнгу и французскому физику О. Френелю, исследовавшим явления интерференции и дифракции. Исчерпывающее объяснение этих явлений могло быть дано только на основе волновой теории. Важное экспериментальное подтверждение справедливости волновой теории было получено в 1851 году, когда Ж. Фуко (и независимо от него А. Физо) измерил скорость распространения света в воде и получил значение υ (

Электромагнитная природа света получила признание после опытов Г. Герца (1887–1888 гг.) по исследованию электромагнитных волн. В начале XX века после опытов П. Н. Лебедева по измерению светового давления (1901 г.) электромагнитная теория света превратилась в твердо установленный факт.

Важнейшую роль в выяснении природы света сыграло опытное определение его скорости. Начиная с конца XVII века предпринимались неоднократные попытки измерения скорости света различными методами (астрономический метод А. Физо, метод А. Майкельсона). Современная лазерная техника позволяет измерять скорость света с очень высокой точностью на основе независимых измерений длины волны λ и частоты света ν (c = λ · ν). Таким путем было найдено значение c = 299792458 ± 1,2 м/с превосходящее по точности все ранее полученные значения более чем на два порядка.

Свет играет чрезвычайно важную роль в нашей жизни. Подавляющее количество информации об окружающем мире человек получает с помощью света. Однако в оптике как разделе физике под светом понимают не только видимый свет, но и примыкающие к нему широкие диапазоны спектра электромагнитного излучения – инфракрасный (ИК) и ультрафиолетовый (УФ). По своим физическим свойством свет принципиально неотличим от электромагнитного излучения других диапазонов – различные участки спектра отличаются друг от друга только длиной волны λ и частотой ν.

Для измерения длин волн в оптическом диапазоне используются единицы длины 1 нанометр (нм) и 1 микрометр (мкм):

1 нм = 10 -9 м = 10 -7 см = 10 -3 мкм.

Видимый свет занимает диапазон приблизительно от 400 нм до 780 нм или от 0,40 мкм до 0,78 мкм.

Распространяющееся в пространстве периодически изменяющееся электромагнитное поле и представляет собой электромагнитную волну.

Наиболее существенные свойства света как электромагнитной волны

  1. При распространении света в каждой точке пространства происходят периодически повторяющиеся изменения электрического и магнитного полей. Эти изменения удобно изображать в виде колебаний векторов напряженности электрического поля (

vec E) и индукции магнитного поля (

vec B) в каждой точке пространства. Свет — поперечная волна, так как (

vec E perp vec upsilon) и (

vec B perp vec upsilon) .
Колебания векторов (

vec B) в каждой точке электромагнитной волны происходят в одинаковы фазах и по двум взаимно перпендикулярным направлениям (

vec E perp vec B) в каждой точке пространства.
Период света как электромагнитной волны (частота) равен периоду (частоте) колебаний источника электромагнитных волн. Для электромагнитных волн справедливо соотношение (

lambda = upsilon cdot T = dfrac) . В вакууме (

lambda_0 = c cdot T = dfrac) – длина волны наибольшая по сравнению с λ в другой среде, так как ν = const и изменяется только υ и λ при переходе от одной среды к другой.
Свет является носителем энергии, причем перенос энергии совершается в направлении распространения волны. Объемная плотность энергии электромагнитной поля определяется выражением (

omega_ = dfrac<2>+ dfrac<2 cdot mu cdot mu_0>)

  • Свет, как и другие волны, распространяются прямолинейно в однородной среде, испытывают преломление при переходе из одной среды во вторую, отражаются от металлических преград. Для них характерны явления дифракции и интерференции.
  • Интерференция света

    Для наблюдений интерференции волн на поверхности воды использовались два источника волн (два шарика, закрепленные на колеблющемся стерженьке). Получить интерференционную картину (чередование минимумов и максимумов освещенности) с помощью двух обычных независимых источников света, например двух электрических лампочек, невозможно. Включение еще одной лампочки лишь увеличивает освещенность поверхности, но не создает чередования минимумов и максимумов освещенности.

    Для того чтобы при наложении световых волн наблюдалась устойчивая интерференционная картина, необходимо, чтобы волны были когерентны, т. е. имели одинаковую длину волны и постоянную разность фаз.

    Почему световые волны от двух источников не когерентны?

    Интерференционная картина от двух источников, которую мы описали, возникает только при сложении монохроматических волн одинаковых частот. У монохроматических волн разность фаз колебаний в любой точке пространства постоянна.

    Волны с одинаковой частотой и постоянной разностью фаз называются когерентными.

    Только когерентные волны, налагаясь друг на друга, дают устойчивую интерференционную картину с неизменным расположением в пространстве максимумов и минимумов колебаний. Световые же волны от двух независи-мых источников не являются когерентными. Атомы источников излучают свет независимо друг от друга отдельными «обрывками» (цугами) синусоидальных волн. Длительность непрерывного излучения атома около 10 с. За это время свет проходит путь длиной около 3 м (рис. 1).

    Эти цуги волн от обоих источников налагаются друг на друга. Разность фаз колебаний в любой точке пространства хаотически меняется со временем в зависимости от того, как в данный момент времени цуги от различных источников сдвинуты друг относительно друга. Волны от различных источников света некогерентны из-за того, что разность начальных фаз не остается постоянной. Фазы φ01 и φ02 меняются случайным образом, и из-за этого случайным образом меняется разность фаз результирующих колебаний в любой точке пространства.

    При случайных обрывах и возникновениях колебаний разность фаз меняется беспорядочно, принимая за время наблюдения τ всевозможные значения от 0 до 2π. В результате за время τ много большее времени нерегулярных изменений фазы (порядка 10 -8 с), среднее значение cos (φ1φ2) в формуле

    I = 4 I_0 cos^2 dfrac <2>= 2 I_0 [1 + cos (varphi_1 – varphi_2)]) .

    равно нулю. Интенсивность света оказывается равной сумме интенсивностей от отдельных источников, и никакой интерференционной картины наблюдаться не будет. В некогерентности световых волн заключается главная причина того, что свет от двух источников не дает интерференционной картины. Это главная, но не единственная причина. Другая причина заключается в том, что длина световой волны, как мы скоро увидим, очень мала. Это сильно затрудняет наблюдение интерференции, если даже располагать когерентными источниками волн.

    Условия максимумов и минимумов интерференционной картины

    В результате наложения двух или более когерентных волн в пространстве возникает интерференционная картина, представляющая собой чередование максимумов и минимумов интенсивности света, а значит, и освещенности экрана.

    Интенсивность света в данной точке пространства определяется разностью фаз колебаний φ1φ2. Если колебания источников синфазны, то φ01φ02 = 0 и

    Delta varphi = varphi_1 – varphi_2 = 2 pi dfrac) . (1)

    Разность фаз определяется разностью расстояний от источников до точки наблюдения Δr = r1r2 (разность расстояний называется разностью хода). В тех точках пространства, для которых выполняется условие

    Delta r = r_1 – r_2 = k lambda ; k = 0, 1, 2, ldots) . (2)

    волны, складываясь, усиливают друг друга, и результирующая интенсивность в 4 раза превосходит интенсивность каждой из волн, т.е. наблюдается максимум. Напротив, при

    Delta r = r_1 – r_2 = dfrac <2>(2k + 1)) . (3)

    волны гасят друг друга (I = 0), т.е. наблюдается минимум.

    Принцип Гюйгенса – Френеля

    Волновая теория основывается на принципе Гюйгенса: каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени.

    Пусть плоская волна нормально падает на отверстие в непрозрачном экране (рис. 2). Согласно Гюйгенсу, каждая точка выделяемого отверстием участка волнового фронта служит источником вторичных волн (в однородной изотропной среде они сферические). Построив огибающую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т. е. волна огибает края отверстия.

    Принцип Гюйгенса решает лишь задачу о направлении распространения волнового фронта, объясняет явление дифракции, но не затрагивает вопроса об амплитуде, а, следовательно, и об интенсивности волн, распространяющихся по разным направлениям. Френель вложил в принцип Гюйгенса физический смысл, дополнив его идеей интерференции вторичных волн.

    Согласно принципу Гюйгенса – Френеля, световая волна, возбуждаемая каким-либо источником S, может быть представлена как результат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками.

    Такими источниками могут служить бесконечно малые элементы любой замкнутой поверхности, охватывающей источник S. Обычно в качестве этой поверхности выбирают одну из волновых поверхностей, поэтому все фиктивные источники действуют синфазно. Таким образом, волны, распространяющиеся от источника, являются результатом интерференции всех когерентных вторичных волн. Френель исключил возможность возникновения обратных вторичных волн и предположил, что если между источником и точкой наблюдения находится непрозрачный экран с отверстием, то на поверхности экрана амплитуда вторичных волн равна нулю, а в отверстии – такая же, как при отсутствии экрана. Учет амплитуд и фаз вторичных волн позволяет в каждом конкретном случае найти амплитуду (интенсивность) результирующей волны в любой точке пространства, т. е. определить закономерности распространения света.

    Способы получения интерференционной картины

    Идея Огюстена Френеля

    Для получения когерентных источников света французский физик Огю-стен Френель (1788—1827) нашел в 1815 г. простой и остроумный способ. Надо свет от одного источника разделить на два пучка и, заставив их пройти различные пути, свести вместе. Тогда цуг волн, испущенных отдельным атомом, разделится на два когерентных цуга. Так будет для цугов волн, испускаемых каждым атомом источника. Свет, испускаемый одним атомом, дает определенную интерференционную картину. При наложении этих картин друг на друга получается достаточно интенсивное распределение освещенности на экране: интерференционную картину можно наблюдать.

    Имеется много способов получения когерентных источников света, но суть их одинакова. С помощью разделения пучка на две части получают два мнимых источника света, дающих когерентные волны. Для этого используют два зеркала (бизеркала Френеля), бипризму (две призмы, сложенные основаниями), билинзу (разрезанную пополам линзу с раздвинутыми половинами) и др.

    Кольца Ньютона

    Первый эксперимент по наблюдение интерференции света в лаборатор-ных условиях принадлежит И. Ньютону. Он наблюдал интерференционную картину, возникающую при отражении света в тонкой воздушной прослойке между плоской стеклянной пластиной и плосковыпуклой линзой большого радиуса кривизны. Интерференционная картина имела вид концентрических колец, получивших название колец Ньютона (рис. 3 а, б).

    Основы электроакустики

    Совсем немного времени с момента открытия электромагнитных колебаний понадобилось на понимание того, что свет также является совокупностью электромаг­нитных колебаний — только очень высокочастотных. Не­случайно скорость света равна скорости распространения электромагнитных волн и характеризуется константой с = 300 ООО км/с.

    Глаз — основной орган человека, воспринимающий свет. При этом длина волны световых колебаний воспри­нимается глазом как цвет световых лучей. В школьном курсе физики приводится описание классического опыта по разложению белого света — стоит достаточно узкий луч белого (например, солнечного) света направить на стек­лянную призму с треугольным сечением, как он тут же расслоится на множество плавно переходящих друг в друга световых пучков разного цвета. Это явление обусловлено различной степенью преломления световых волн различ­ной длины.

    Помимо длины волны (или частоты), световые коле­бания характеризуются интенсивностью. Из ряда мер интенсивности светового излучения (яркость, световой поток, освещенность и др.) при описании видеоустройств наиболее важной является освещенность. Не вдаваясь в тонкости определения световых характеристик, отметим, что освещенность измеряется в люксах и является привыч­ной для нас мерой визуальной оценки видимости объек­тов. Ниже представлены типовые уровни освещенности:

    • Освещенность в 20 см от горящей свечи 10—15 люкс
    • Освещенность комнаты при горящих лампах накаливания 100 люкс
    • Освещенность офиса с люминесцентными лампами 300-500 люкс
    • Освещенность, создаваемая галогенными лампами 750 люкс
    • Освещенность при ярком солнечном свете 20000люкс и выше

    Свет широко используется в технике связи. Достаточ­но отметить такие применения света, как передача инфор­мации по световолоконным линиям связи, применение в современных электроакустических устройствах оптичес­кого выхода для оцифрованных звуковых сигналов, при­менение пультов дистанционного управления по лучу инфракрасного света и др.

    Электромагнитная природа света Свет обладает как волновыми свойствами, так и корпускулярными свойствами. Такое свойство света называет корпускулярно-волновой дуализм. Но ученые и физики древности не знали об этом, и изначально считали свет упругой волной.

    Свет – волны в эфире Но так как для распространения упругих волн нужна среда, то возникал правомерный вопрос, в какой же среде распространяется свет? Какая среда находится на пути от Солнца к Земле? Сторонники волновой теории света предположили что всё пространство во вселенной заполнено некоторой невидимой упругой средой. Они даже придумали ей название – светоносный эфир. В то время, ученые еще не знали о существовании каких либо волн, кроме механических. Такие взгляды на природу света высказывались примерно в 17 веке. Считалось, что свет распространяется именно в этом светоносном эфире.

    Свет – поперечная волна Но такое предположение вызывало ряд противоречивых вопросов. К концу 18 века было доказано, что свет является поперечной волной. А упругие поперечные волны могут возникать только в твердых телах, следовательно, светоносный эфир является твердым телом. Это вызывало сильную головную боль у ученых того времени. Как небесные тела могут двигаться сквозь твердый светоносный эфир, и при этом не испытывать никакого сопротивления.

    Свет – электромагнитная волна Во второй половине 19 века Максвелл доказал теоретически существование электромагнитных волн, которые могут распространяться даже в вакууме. И он предположил, что свет тоже является электромагнитной волной. Потом это предположение подтвердилось. Но актуально также было представление о том, что в некоторых случаях свет ведет себя как поток частиц. Теория Максвелла противоречила некоторым экспериментальным фактам. Но, в 1990 году, физик Макс Планк выдвинул гипотезу, что атомы испускают электромагнитную энергию отдельными порциями – квантами. А в 1905 г. Альберт Эйнштейн выдвинул идею, о том, что электромагнитные волны с некоторой частотой можно рассматривать как поток квантов излучения с энергией E=р*ν. В настоящее время квант электромагнитного излучения называют фотоном. Фотон не обладает ни массой, ни зарядом и всегда распространяется со скоростью света. То есть при излучении и поглощении свет проявляет корпускулярные свойства, а при перемещении в пространстве волновые.

    Конспект урока” Свет как электромагнитная волна”

    на тему «Свет как электромагнитная волна»

    Профессия :» Тракторист-машинист с/х производства.»

    Срок обучения :3 года 10 мес.

    Продолжительность урока : 45минут.

    Тип урока: введение нового материала

    Вид урока: урок-лекция

    Образовательная: усвоение студентами знаний об электромагнитной природе света, установление зависимости между длиной волны и частотой электромагнитного излучения, знание диапазона световых волн, принципа Гюйгенса.

    Воспитательная: формирование научного мировоззрения, системы взглядов на мир, интерес к познанию законов природы, умение применять полученные знания на практике.

    Развивающая: развитие теоретического мышления, основных логических операций (умения сравнивать, обобщать, анализировать, делать выводы), развитие интеллекта.

    Оборудование: учебник, лекция.

    1 этап – Организационный момент (5 мин).

    2 этап – Актуализация опорных знаний (10мин).

    3 этап – Изучение нового материала ( 15 мин).

    4 этап -Закрепление (10 мин).

    5 этап – Выдача домашнего задания (5 мин).

    Проверка посещаемости студентов и их подготовленности к уроку: наличие учебников и тетрадей. Проверка готовности аудитории к занятию.

    Актуализация опорных знаний

    Для актуализации знаний проводится индивидуальный опрос.

    1) Что такое электромагнитная волна?

    Возможный ответ: это периодически повторяющееся изменение электрического и магнитного полей.

    2) Кем впервые были обнаружены электромагнитные волны?

    Возможный ответ: электромагнитные волны были обнаружены в опыте, проведенным Г. Герцом.

    3) Кем была разработана теория электромагнитного поля?

    Возможный ответ: теория электромагнитного поля была разработана Дж. Максвеллом.

    4) Что такое колебательный контур?

    Возможный ответ: это электрическая цепь, состоящая из соединенных между собой катушки индуктивности и конденсатора.

    5) Что называют электромагнитным излучением?

    Возможный ответ: это электромагнитные волны, создаваемые колебательным контуром.

    6) Назовите способы передачи воздействия одного тела на другое.

    Возможный ответ: действие одного тела на другое может осуществляться двумя способами – переносом вещества от одного тела к другому; посредством волнового процесса – перенос энергии без переноса вещества.

    Изучение нового материала

    Студенты записывают тему занятия «Свет как электромагнитная волна» и план лекции.

    Краткая история развития представлений о природе света.

    Электромагнитная природа света. Зависимость между длиной волны и частотой электромагнитного излучения. Диапазон световых волн.

    Вопрос 1 (студенты делают краткий конспект лекции)

    История развития представлений о природе света берет свое начало еще в античности. Работы ученых древности помогли открыть следующее:

    – прямолинейность распространения света – закон прямолинейного распространения света открыт Евклидом (300 г. до н.э.) – в однородной прозрачной среде свет распространяется прямолинейно;

    – явление отражения света и закон отражения;

    – явление преломления света;

    – фокусирующее действие вогнутого зеркала.

    В середине 17 века появились 2 гипотезы о природе света, которые отличались друг о друга способами передачи энергии. И. Ньютон предложил корпускулярную теорию света, по которой свет есть поток частиц, выбрасываемых с большой скоростью светящимися телами.

    Основные идеи этой гипотезы:

    1) Свет состоит из малых частичек вещества, испускаемых во всех направлениях по прямым линиям. Если лучи попадают в глаз, то мы видим их источник;

    2) Световые корпускулы имеют разные размеры. Самые крупные дают красный цвет, самые мелкие – фиолетовый;

    3) Белый цвет – смесь всех цветов;

    4) Отражение света от поверхности происходит вследствие отражения корпускул от стенки по закону абсолютно упругого удара;

    5) Явление преломления света объясняется тем, что корпускулы притягиваются частицами среды. Чем оптически плотнее среда, тем угол

    Другую теорию – волновую – предложил Х. Гюйгенс, по которой свет представляет собой продольные колебательные движения особой светоносной среды – эфира – возбуждаемой колебаниями частиц светящегося тела.

    Основные идеи данной гипотезы:

    1) Свет – распространение упругих механических апериодических импульсов в эфире. Эти импульсы продольны.

    2) Эфир – гипотетическая среда, заполняющая небесное пространство и промежутки между частицами тел. Не подчиняется закону всемирного тяготения, обладает большой упругостью.

    3) Принцип распространения колебаний эфира таково, что каждая его точка, до которой доходит возбуждение, является центром вторичных волн. Эти волны слабы, и эффект наблюдается только там, где проходит их огибающая поверхность – фронт волны.

    Обе эти теории существовали параллельно, но, ни одна из них не могла одержать окончательную победу. Однако в начале 20 века были открыты такие свойства света, как излучение и поглощение. Эти свойства относятся к свету, если является потоком частиц. В настоящее время считается, что свет в одних случаях ведет себя как поток частиц (корпускул), в других – как электромагнитная волна. Такая природа света называется корпускулярно-волновой дуализм.

    Важную роль в объяснении природы света сыграло опытное определение скорости распространения света.

    Впервые скорость света попытался Галилео Галилей в 1607 году. Он пытался измерить скорость света по времени прохождения светом известного расстояния между вершинами двух холмов. На вершине одного из холмов Галилей поставил своего ассистента, на вершине другого встал сам. Ассистенту было наказано снять крышку со своего фонаря в тот момент, когда он увидит вспышку света фонаря Галилея. Галилей измерил промежуток времени между вспышкой своего фонаря и моментом, когда он увидел вспышку фонаря ассистента. Этот промежуток оказался столь коротким, что Галилей счёл его характеризующим только быстроту реакции человека и заключил, что скорость света должна быть беспредельно велика.

    Скорость света впервые удалось измерить датскому астроному Оле Рёмер в 1675 году. Когда Земля, вращаясь вокруг Солнца, находилась на своей орбите в положении А, Оле Рёмер наблюдал затмения одного из спутников планеты Юпитера .

    Из этих наблюдений Оле Рёмер определил период обращения спутника вокруг Юпитера и рассчитал моменты затмений его на год вперёд. Проверив свои расчёты полгода спустя, Рёмер обнаружил, что затмения спутника Юпитера запаздывают относительно расчётных приблизительно на 22 мин . Такое запаздывание Оле Рёмер объяснил тем, что свет, имеющий конечную скорость распространения, проходит увеличивающееся расстояние между Юпитером и Землей за большее время . Разделив диаметр земной орбиты на время запаздывания , было получено значение скорости света:

    Лабораторные методы измерения скорости света

    Впервые скорость света лабораторным методом удалось измерить французскому физику Арманом Физо в 1849 г.

    В опыте Физо свет от источника, пройдя через линзу, падал на полупрозрачную пластинку 1 (рисунок 1). После отражения от пластинки сфокусированный узкий пучок направлялся на периферию быстровращающегося зубчатого колеса. Пройдя между зубцами, свет достигал зеркала 2, находящегося на расстоянии нескольких километров от колеса. Отразившись от зеркала, свет, прежде чем попасть в глаз наблюдателя, должен был пройти опять между зубцами. Когда колесо вращалось медленно, свет, отраженный от зеркала, был виден. При увеличении скорости вращения он постепенно исчезал. Т.о., пока свет, прошедший между двумя зубцами, шел до зеркала и обратно, колесо успевало повернуться так, что на место прорези вставал зубец, и свет переставал быть видимым.

    Рисунок 1

    При дальнейшем увеличении скорости вращения свет опять становился видимым. Очевидно, что за время распространения света до зеркала и обратно колесо успевало в этом случае повернуться настолько, что на место прежней прорези вставала уже новая прорезь.

    Зная это время и расстояние между колесом и зеркалом, можно определить скорость света. В опыте Физо при расстоянии, равном 8,6 км, для скорости света было получено значение 313 000 км/с.

    Другие опыты по измерению скорости света проводил американский физик Альбертом Майкельсон. Он разработал метод определения скорости света с применением вращающихся зеркал.

    Принятое в настоящее время значение скорости света с в вакууме составляет 299792458 м/с. Обычно оно округляется до 3*10 8 м/с.

    Оптика – раздел физики, изучающий световые явления, выясняющий природу света, устанавливающий свойства света, закономерности его излучения, распространения и взаимодействия с веществом. Оптика подразделяется на следующие разделы:

    Изучение оптики мы начнем именно с геометрической оптики. Геометрическая оптика – раздел оптики, изучающий законы распространения света в прозрачных средах и законы его отражения от зеркальных поверхностей на основе представления о световой луче.

    Распространение света в прозрачных средах рассматривается на основе представлений о свете как о совокупности световых лучей.

    Световой луч – линия, указывающая направление, вдоль которого распространяется световая энергия. В действительности в природе существуют световые пучки.

    Закон прямолинейного распространения света: в однородной прозрачной среде свет распространяется прямолинейно.

    Необходимо вспомнить, как находится длина волны. Согласно электромагнитной теории света любое световое излучение является электромагнитными волнами. При этом к световым волнам относятся только те, которые вызывают у человека зрительные ощущения. Вспомним формулу, по которой можно вычислить скорость распространения любой волны:

    где λ – длина волны, ν – частота волны.

    Из этой формулы можно получить формулу, по которой можно вычислить длину световой волны в вакууме (заменив на ):

    Из формулы можно отметить следующую закономерность: чем больше длина волны, тем меньше ее частота. При этом если световое излучение переходит из одной среды в другую, то его цвет сохраняется, т.к. сохраняется частота излучения. Цвет характеризует длину световой волны в вакууме.

    Данная закономерность справедлива для любых видов волн.

    Некоторые свойства, как преломление света и давление, объясняются двумя гипотезами.

    Введем общий принцип, который описывает поведение волн, из которого в дальнейшем выведем законы отражения и преломления света. Этот принцип впервые был выдвинут современником Ньютона Христианом Гюйгенсом и называется принципом Гюйгенса:

    Каждая точка фронта волны является источником вторичных волн, распространяющихся во все стороны со скорость распространения волны в среде.

    Эти волны слабы, и эффект наблюдается только там, где проходит их огибающая поверхность – фронт волны. Фронт волны – совокупность точек, колеблющихся в одинаковой фазе.

    Для того чтобы, зная положение волновой поверхности (фронта волны) в момент времени t, найти ее положение в следующий момент времени t + t , нужно каждую точку фронта рассматривать как источник вторичных волн. Точки М 1 , M 2 , M 3 и т. д. являются такими источниками. Поверхность, касательная к фронтам вторичных волн, представляет собой фронт первичной волны в следующий момент времени. Этот принцип в равной мере пригоден для описания распространения волн любой природы: механических, световых и т. д. Гюйгенс сформулировал его первоначально именно для световых волн.

    Закрепления изученного материала

    Для закрепления изученного материала проводится групповой опрос.

    Расскажите об истории развития представлений о природе света.

    В чем заключается электромагнитная природа света?

    В чем отличие световых волн от механических?

    Как зависит длина волны от частоты электромагнитного излучения?

    Перечислите диапазон световых волн.

    Сформулируйте принцип Гюйгенса.

    В чем заключается двойственная природа света?

    Перечислите волновые свойства света.

    Студенты записывают домашнее задание: прочитать параграфы из учебника «Физика» Г.Я.Мякишев § 45; выучить записанный конспект.

    Тема. Свет как электромагнитная волна. Интерференция световых волн. Реферат: Свет электромагнитная волна

    В современной физике свет описывается либо как электромагнитные волны, либо как фотоны.

    2.5.1. Электромагнитные волны

    Электромагнитные волны включают в себя комбинацию электрических и магнитных полей. Рассмотрим электрический заряд. Он создает вокруг себя электрическое поле. Если заряд движется, он создает магнитное поле. Было теоретически показано и экспериментально подтверждено, что эти электрические и магнитные поля объединяются и вызывают возмущение, которое распространяется через пространство и называется электромагнитной волной. Эта волна является самораспространяющейся, поскольку изменяющееся электрическое поле вызывает изменение магнитного поля, которое затем вызывает новое изменение электрического поля и т. д. Таким образом, происходит постоянный обмен энергией между электрическим и магнитным полями.

    Когда электромагнитная волна сталкивается с материей, ее электрические и магнитные поля заставляют заряженные частицы этой материи колебаться таким же образом, как в исходной волне. Это позволяет энергии передаваться через материал без перемещения самой материи. Все электромагнитные волны обладают следующими свойствами.

    Они создаются движущимися зарядами.

    Они являются поперечными волнами, в которых электрическое и магнитное поля взаимно перпендикулярны и перпендикулярны направлению распространения волн.

    Они не требуют для своего распространения какого-либо материала, но могут распространяться сквозь материал без перемещения вещества.

    Они все движутся в свободном пространстве с одинаковой относительной скоростью, которая называется скоростью света.

    Количественно поведение электромагнитных волн описывается уравнениями Максвелла, однако их рассмотрение выходит за рамки данной книги, где мы концентрируемся на практических приложениях, а не на отвлеченной теории.

    2.5.2. Фотоны

    где h – постоянная Планка (6,63 х 10 -34 Джоуль/сек.).

    Квант света называется фотоном. У фотона есть некоторые свойства частицы, поскольку он дискретен и конечен. Свет, однако, это также и волна, что можно наблюдать в эффектах дифракции и интерференции. Таким образом оказывается, что свет одновременно частица и волна. Это противоречие, поскольку частица конечная и дискретная, тогда как волна бесконечная и непрерывная. Физики рассматривают обе теории как взаимно дополняющие друг друга, но не применяют их одновременно. Этот эффект известен как партикулярно-волновой дуализм света, а обе физические модели равно верны и полезны в описании различных оптических эффектов. Интересно заметить, что в обоих моделях имеются части, не согласующиеся друг с другом.

    Свет в виде фотонов или волн движется в свободном пространстве со скоростью примерно 300000 км/с (3 х 10 8 м/с). Многие эффекты можно лучше рассмотреть, представляя свет как лучи, движущиеся по прямым линиям между оптическими компонентами или через них. Лучи изменяются (отражаются, преломляются, рассеиваются и т. д.) на оптических поверхностях утих устройств. Такое оптическое поведение

    Свет может рассматриваться либо как электромагнитная волна, скорость распространения в вакууме которой постоянна, либо как поток фотонов — частиц, обладающих определённой энергией, импульсом, собственным моментом импульса и нулевой массой.

    Под светом в оптике понимают электромагнитные волны достаточно узкого диапазона. Нередко, под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра. Исторически появился термин «невидимый свет» — ультрафиолетовый свет, инфракрасный свет, радиоволны. Длины волн видимого света лежат в диапазоне от 380 до 760 нанометров.

    Одной из характеристик света является его цвет, который определяется частотой световой волны. Белый свет представляет собой смесь волн различных частот. Он может быть разложен на цветные волны, каждая из которых характеризуется определенной частотой. Такие волны называются монохроматическими.

    Согласно самым новым измерениям скорость света в вакууме

    Измерения скорости света в различных прозрачных веществах показали, что она всегда меньше, чем в вакууме. Например, в воде скорость света уменьшается в 4/3 раза.

    Отношение скорости света в вакууме к скорости света в веществе называется абсолютным показателем преломления вещества.

    При переходе световой волны из вакуума в вещество частота остается постоянной (цвет не изменяется). Длина волны в среде с показателем преломления n изменяется:

    Электромагнитные волны представляют собой распространение электромагнитных полей в пространстве и времени.

    Рассмотрим основные свойства электромагнитных волн.1. Электромагнитные волны излучаются колеблющимися зарядами.
    Наличие ускорения – главное условие излучения электромагнитных волн.
    2. Такие волны могут распространяться не только в газах, жидкостях и твердых средах, но и в вакууме.
    3. Электромагнитная волна является поперечной.

    4. Скорость электромагнитных волн в вакууме с=300000 км/с.

    5. При переходе из одной среды в другую частота волны не изменяется .
    6. Электромагнитные волны могут поглощаться веществом. Это обусловлено (25) резонансным поглощением энергии заряженными частицами вещества. Если собственная частота колебаний частиц диэлектрика сильно отличается от частоты электромагнитной волны, поглощение происходит слабо, и среда становится прозрачной для электромагнитной волны.

    7. Попадая на границу раздела двух сред, часть волны отражается, а часть проходит в другую среду,преломляясь. Если второй средой является металл, то прошедшая во вторую среду волна быстро затухает, а большая часть энергии отражается в первую среду (металлы являются непрозрачными для электромагнитных волн).

    Для электромагнитных волн, так же, как и для механических, справедливы свойства дифракции, интерференции, поляризации и другие.

    Из теории электромагнитного поля, разработанной Дж. Максвеллом, следовало: электромагнитные волны распространяются со скоростью света – 300 000 км/с, что эти волны поперечны, так же как и световые волны. Максвелл предположил, что свет – это электромагнитная волна. В дальнейшем это предсказание нашло экспериментальное подтверждение.

    Как и электромагнитные волны, распространение света подчиняется тем же законам:

    Закон прямолинейного распространения света. В прозрачной однородной среде свет распространяется по прямым линиям. Этот закон позволяет объяснить, как возникают солнечные и лунные затмения.

    При падении света на границу раздела двух сред часть света отражается в первую среду, а часть проходит во вторую среду, если она прозрачна, изменяя при этом направление своего распространения, т. е. преломляется.

    Предположим, что две монохроматические световые волны, накладываюсь друг на друга, возбуждают в определенной точке пространства колебания одинакового направления: х 1 = А 1 cos(t +  1) и x 2 = A 2 cos(t +  2). Под х понимают напряженность электрического Е или магнитного Н полей волны; векторы Е и Н колеблются во взаимно перпендикулярных плоскостях (см. § 162). Напряженности электрического и магнитного полей подчиняются принципу суперпозиции (см. § 80 и 110). Амплитуда результирующего колебания в данной точке A 2 = A 2 l + A 2 2 + 2A 1 A 2 cos( 2 - 1) (см. 144.2)). Так как волны когерентны, то cos( 2 –  1) имеет постоянное во времени (но свое для каждой точки пространства) значение, поэтому интенсивность результирующей волны (1

    В точках пространства, где cos( 2 –  1) > 0, интенсивность I > I 1 + I 2 , где cos( 2 –  1) n > n 0 , то потеря полуволны происходит на обеих поверхностях; следовательно, условие минимума (предполагаем, что свет падает нормально, т. е. I = 0)

    где ndоптическая толщина пленки . Обычно принимают m = 0, тогда

    Таким образом, если выполняется условие (175.1) и оптическая толщина пленки равна  0 /4, то в результате интерференции наблюдается гашение отраженных лучей. Так как добиться одновременного гашения для всех длин волн невозможно, то это обычно делается для наиболее восприимчивой глазом длины волны  0  0,55 мкм. Поэтому объективы с просветленной оптикой имеют синевато-красный оттенок.

    Создание высокоотражающих покрытий стало возможным лишь на основе многолучевой интерференции . В отличие от двухлучевой интерференции, которую мы рассматривали до сих пор, многолучевая интерференция возникает при наложении большого числа когерентных световых пучков. Распределение интенсивности в интерференционной картине существенно различается; интерференционные максимумы значительно уже и ярче, чем при наложении двух когерентных световых пучков. Так, результирующая амплитуда световых колебаний одинаковой амплитуды в максимумах интенсивности, где сложение происходит в одинаковой фазе, в N раз больше, а интенсивность в N 2 раз больше, чем от одного пучка (N – число интерферирующих пучков). Отметим, что для нахождения результирующей амплитуды удобно пользоваться графическим методом, используя метод вращающегося вектора амплитуды (см. § 140). Многолучевая интерференция осуществляется в дифракционной решетке (см. § 180).

    Многолучевую интерференцию можно осуществить в многослойной системе чередующихся пленок с разными показателями преломления (но одинаковой оптической толщиной, равной  0 /4), нанесенных на отражающую поверхность (рис. 254). Можно показать, что на границе раздела пленок (между двумя слоями ZnS с большим показателем преломления n 1 находится пленка криолита с меньшим показателем преломления n 2) возникает большое число отраженных интерферирующих лучей, которые при оптической толщине пленок  0 /4 будут взаимно усиливаться, т. е. коэффициент отражения возрастает. Характерной особенностью такой высокоотражательной системы является то, что она действует в очень узкой спектральной области, причем чем больше коэффициент отражения, тем уже эта область. Например, система из семи пленок для области 0,5 мкм дает коэффициент отражения   96% (при коэффициенте пропускания  3,5% и коэффициенте поглощения

    Читать еще:  Почему не работает прерывистый режим дворников
    Ссылка на основную публикацию
    Adblock
    detector